I´m using the glmnet package to perform a LASSO regression. Is there a way to get the importance of the individual variables that were selected? I thought about ranking the coefficients that were obtained through the coef(...) command (i.e. the greater the distance from zero the more important a variable would be). Would that be a valid approach?
Thanks for your help!
cvfit = cv.glmnet(x, y, family = "binomial")
coef(cvfit, s = "lambda.min")
## 21 x 1 sparse Matrix of class "dgCMatrix"
## 1
## (Intercept) 0.14936
## V1 1.32975
## V2 .
## V3 0.69096
## V4 .
## V5 -0.83123
## V6 0.53670
## V7 0.02005
## V8 0.33194
## V9 .
## V10 .
## V11 0.16239
## V12 .
## V13 .
## V14 -1.07081
## V15 .
## V16 .
## V17 .
## V18 .
## V19 .
## V20 -1.04341