I'm a total beginner to TensorFlow, and I'm trying to multiply two matrices together, but I keep getting an exception that says:
ValueError: Shapes TensorShape([Dimension(2)]) and TensorShape([Dimension(None), Dimension(None)]) must have the same rank
Here's minimal example code:
data = np.array([0.1, 0.2])
x = tf.placeholder("float", shape=[2])
T1 = tf.Variable(tf.ones([2,2]))
l1 = tf.matmul(T1, x)
init = tf.initialize_all_variables()
with tf.Session() as sess:
sess.run(init)
sess.run(feed_dict={x: data}
Confusingly, the following very similar code works fine:
data = np.array([0.1, 0.2])
x = tf.placeholder("float", shape=[2])
T1 = tf.Variable(tf.ones([2,2]))
init = tf.initialize_all_variables()
with tf.Session() as sess:
sess.run(init)
sess.run(T1*x, feed_dict={x: data}
Can anyone point to what the issue is? I must be missing something obvious here..