adapting my answer from:
OpenCV 2.4.3 - warpPerspective with reversed homography on a cropped image
you can use this code:
int main(int argc, const char * argv[]) {
cv::Mat img = cv::imread("../inputData/rotationInput.jpg");
cv::imshow("input", img);
cv::Mat dst;
cv::Mat rot_mat = cv::getRotationMatrix2D(cv::Point(img.cols / 2.0, img.rows / 2.0), 90, 1);
//cv::warpAffine(img, dst, rot_mat, cv::Size(img.rows, img.cols));
// since I didnt write the code for affine transformations yet, we have to embed the affine rotation matrix in a perspective transformation
cv::Mat perspRotation = cv::Mat::eye(3,3, CV_64FC1);
for(int j=0; j<rot_mat.rows; ++j)
for(int i=0; i<rot_mat.cols; ++i)
{
perspRotation.at<double>(j,i) = rot_mat.at<double>(j,i);
}
// image boundary corners:
std::vector<cv::Point> imageCorners;
imageCorners.push_back(cv::Point(0,0));
imageCorners.push_back(cv::Point(img.cols,0));
imageCorners.push_back(cv::Point(img.cols,img.rows));
imageCorners.push_back(cv::Point(0,img.rows));
// look at where the image will be placed after transformation:
cv::Rect warpedImageRegion = computeWarpedContourRegion(imageCorners, perspRotation);
// adjust the transformation so that the top-left corner of the transformed image will be placed at (0,0) coordinate
cv::Mat adjustedTransformation = adjustHomography(warpedImageRegion, perspRotation);
// finally warp the image
cv::warpPerspective(img, dst, adjustedTransformation, warpedImageRegion.size());
//mwrite("/Users/chuanliu/Desktop/roatation.jpg", dst);
cv::imwrite("../outputData/rotationOutput.png", dst);
cv::imshow("out", dst);
cv::waitKey(0);
return 0;
}
which uses these helper functions:
cv::Rect computeWarpedContourRegion(const std::vector<cv::Point> & points, const cv::Mat & homography)
{
std::vector<cv::Point2f> transformed_points(points.size());
for(unsigned int i=0; i<points.size(); ++i)
{
// warp the points
transformed_points[i].x = points[i].x * homography.at<double>(0,0) + points[i].y * homography.at<double>(0,1) + homography.at<double>(0,2) ;
transformed_points[i].y = points[i].x * homography.at<double>(1,0) + points[i].y * homography.at<double>(1,1) + homography.at<double>(1,2) ;
}
// dehomogenization necessary?
if(homography.rows == 3)
{
float homog_comp;
for(unsigned int i=0; i<transformed_points.size(); ++i)
{
homog_comp = points[i].x * homography.at<double>(2,0) + points[i].y * homography.at<double>(2,1) + homography.at<double>(2,2) ;
transformed_points[i].x /= homog_comp;
transformed_points[i].y /= homog_comp;
}
}
// now find the bounding box for these points:
cv::Rect boundingBox = cv::boundingRect(transformed_points);
return boundingBox;
}
cv::Mat adjustHomography(const cv::Rect & transformedRegion, const cv::Mat & homography)
{
if(homography.rows == 2) throw("homography adjustement for affine matrix not implemented yet");
// unit matrix
cv::Mat correctionHomography = cv::Mat::eye(3,3,CV_64F);
// correction translation
correctionHomography.at<double>(0,2) = -transformedRegion.x;
correctionHomography.at<double>(1,2) = -transformedRegion.y;
return correctionHomography * homography;
}
and produces this output for 90°:

and this output for 33°

btw, if you only want to rotate for 90°/180° there might be much more efficient and more accurate (concerning interpolation) methods than image warping!!