I'm trying to automate a process that at some point needs to draw samples from a truncated multivariate normal. That is, it's a normal multivariate normal distribution (i.e. Gaussian) but the variables are constrained to a cuboid. My given inputs are the mean and covariance of the full multivariate normal but I need samples in my box.
Up to now, I'd just been rejecting samples outside the box and resampling as necessary, but I'm starting to find that my process sometimes gives me (a) large covariances and (b) means that are close to the edges. These two events conspire against the speed of my system.
So what I'd like to do is sample the distribution correctly in the first place. Googling led only to this discussion or the truncnorm
distribution in scipy.stats
. The former is inconclusive and the latter seems to be for one variable. Is there any native multivariate truncated normal? And is it going to be any better than rejecting samples, or should I do something smarter?
I'm going to start working on my own solution, which would be to rotate the untruncated Gaussian to it's principal axes (with an SVD decomposition or something), use a product of truncated Gaussians to sample the distribution, then rotate that sample back, and reject/resample as necessary. If the truncated sampling is more efficient, I think this should sample the desired distribution faster.