23

I have been searching for an implementation of the ICP algorithm in python lately with no result.

According to wikipedia article http://en.wikipedia.org/wiki/Iterative_closest_point, the algorithm steps are:

  • Associate points by the nearest neighbor criteria (for each point in one point cloud find the closest point in the second point cloud).

  • Estimate transformation parameters (rotation and translation) using a mean square cost function (the transform would align best each point to its match found in the previous step).

  • Transform the points using the estimated parameters.

  • Iterate (re-associate the points and so on).

Well, I know that ICP is a very useful algorithm and it is used in a variety of applications. However I could not find any built in solution in Python. Am, I missing anything here?

Harry R.
  • 751
  • 1
  • 5
  • 11
  • Hey Harry, it's great that you want to share a solution, but please do so by posting an answer to an actual *question*. You can even write the question yourself if you like... See: http://blog.stackoverflow.com/2011/07/its-ok-to-ask-and-answer-your-own-questions/ – Shog9 Nov 22 '13 at 05:47
  • Thank you Shog9, I have not read that blog before. I appologize for that! – Harry R. Nov 22 '13 at 13:16

3 Answers3

30

Finally, I managed to write my own implementation of ICP in Python, using the sklearn and opencv libraries.

The function takes two datasets, an initial relative pose estimation and the desired number of iterations. It returns a transformation matrix that transforms the first dataset to the second.

Enjoy!

 import cv2
 import numpy as np
 import matplotlib.pyplot as plt
 from sklearn.neighbors import NearestNeighbors


def icp(a, b, init_pose=(0,0,0), no_iterations = 13):
    '''
    The Iterative Closest Point estimator.
    Takes two cloudpoints a[x,y], b[x,y], an initial estimation of
    their relative pose and the number of iterations
    Returns the affine transform that transforms
    the cloudpoint a to the cloudpoint b.
    Note:
        (1) This method works for cloudpoints with minor
        transformations. Thus, the result depents greatly on
        the initial pose estimation.
        (2) A large number of iterations does not necessarily
        ensure convergence. Contrarily, most of the time it
        produces worse results.
    '''

    src = np.array([a.T], copy=True).astype(np.float32)
    dst = np.array([b.T], copy=True).astype(np.float32)

    #Initialise with the initial pose estimation
    Tr = np.array([[np.cos(init_pose[2]),-np.sin(init_pose[2]),init_pose[0]],
                   [np.sin(init_pose[2]), np.cos(init_pose[2]),init_pose[1]],
                   [0,                    0,                   1          ]])

    src = cv2.transform(src, Tr[0:2])

    for i in range(no_iterations):
        #Find the nearest neighbours between the current source and the
        #destination cloudpoint
        nbrs = NearestNeighbors(n_neighbors=1, algorithm='auto',
                                warn_on_equidistant=False).fit(dst[0])
        distances, indices = nbrs.kneighbors(src[0])

        #Compute the transformation between the current source
        #and destination cloudpoint
        T = cv2.estimateRigidTransform(src, dst[0, indices.T], False)
        #Transform the previous source and update the
        #current source cloudpoint
        src = cv2.transform(src, T)
        #Save the transformation from the actual source cloudpoint
        #to the destination
        Tr = np.dot(Tr, np.vstack((T,[0,0,1])))
    return Tr[0:2]

Call it like this:

#Create the datasets
ang = np.linspace(-np.pi/2, np.pi/2, 320)
a = np.array([ang, np.sin(ang)])
th = np.pi/2
rot = np.array([[np.cos(th), -np.sin(th)],[np.sin(th), np.cos(th)]])
b = np.dot(rot, a) + np.array([[0.2], [0.3]])

#Run the icp
M2 = icp(a, b, [0.1,  0.33, np.pi/2.2], 30)

#Plot the result
src = np.array([a.T]).astype(np.float32)
res = cv2.transform(src, M2)
plt.figure()
plt.plot(b[0],b[1])
plt.plot(res[0].T[0], res[0].T[1], 'r.')
plt.plot(a[0], a[1])
plt.show()
Harry R.
  • 751
  • 1
  • 5
  • 11
  • 5
    I had some problems with this implementation (cv.estimateRigidTransform() sometimes return None). So I re did it using Newton-CG from scipy.optimize. It can handle pretty bad inital guesses now (e.g. I tried your example with initial guess (0,0,0) and 0.2+5,0.3-7,th+0.7) and that worked. The code is at: https://gist.github.com/ecward/c373932638fd04a2243e – user1443778 Aug 21 '15 at 13:39
  • @Harry R. can we use ICP to align two tsne? – javac Oct 04 '17 at 20:33
  • 1
    I also ran into errors, and so I tried this Python 3 implementation of ICP which worked well for me. https://github.com/ClayFlannigan/icp – brad Apr 30 '19 at 20:24
  • 1
    Note that `estimateRigidTransform` is now deprecated and not available anymore in the python bindings. – Pieter Meiresone Mar 12 '21 at 16:01
8

I made an update from an existing project optimised for real-time video.

The code work for python 3.7 and the associate opencv librairie.

enter image description here

def icp(a, b,
        max_time = 1
    ):
    import cv2
    import numpy
    import copy
    import pylab
    import time
    import sys
    import sklearn.neighbors
    import scipy.optimize



    def res(p,src,dst):
        T = numpy.matrix([[numpy.cos(p[2]),-numpy.sin(p[2]),p[0]],
        [numpy.sin(p[2]), numpy.cos(p[2]),p[1]],
        [0 ,0 ,1 ]])
        n = numpy.size(src,0)
        xt = numpy.ones([n,3])
        xt[:,:-1] = src
        xt = (xt*T.T).A
        d = numpy.zeros(numpy.shape(src))
        d[:,0] = xt[:,0]-dst[:,0]
        d[:,1] = xt[:,1]-dst[:,1]
        r = numpy.sum(numpy.square(d[:,0])+numpy.square(d[:,1]))
        return r

    def jac(p,src,dst):
        T = numpy.matrix([[numpy.cos(p[2]),-numpy.sin(p[2]),p[0]],
        [numpy.sin(p[2]), numpy.cos(p[2]),p[1]],
        [0 ,0 ,1 ]])
        n = numpy.size(src,0)
        xt = numpy.ones([n,3])
        xt[:,:-1] = src
        xt = (xt*T.T).A
        d = numpy.zeros(numpy.shape(src))
        d[:,0] = xt[:,0]-dst[:,0]
        d[:,1] = xt[:,1]-dst[:,1]
        dUdth_R = numpy.matrix([[-numpy.sin(p[2]),-numpy.cos(p[2])],
                            [ numpy.cos(p[2]),-numpy.sin(p[2])]])
        dUdth = (src*dUdth_R.T).A
        g = numpy.array([  numpy.sum(2*d[:,0]),
                        numpy.sum(2*d[:,1]),
                        numpy.sum(2*(d[:,0]*dUdth[:,0]+d[:,1]*dUdth[:,1])) ])
        return g
    def hess(p,src,dst):
        n = numpy.size(src,0)
        T = numpy.matrix([[numpy.cos(p[2]),-numpy.sin(p[2]),p[0]],
        [numpy.sin(p[2]), numpy.cos(p[2]),p[1]],
        [0 ,0 ,1 ]])
        n = numpy.size(src,0)
        xt = numpy.ones([n,3])
        xt[:,:-1] = src
        xt = (xt*T.T).A
        d = numpy.zeros(numpy.shape(src))
        d[:,0] = xt[:,0]-dst[:,0]
        d[:,1] = xt[:,1]-dst[:,1]
        dUdth_R = numpy.matrix([[-numpy.sin(p[2]),-numpy.cos(p[2])],[numpy.cos(p[2]),-numpy.sin(p[2])]])
        dUdth = (src*dUdth_R.T).A
        H = numpy.zeros([3,3])
        H[0,0] = n*2
        H[0,2] = numpy.sum(2*dUdth[:,0])
        H[1,1] = n*2
        H[1,2] = numpy.sum(2*dUdth[:,1])
        H[2,0] = H[0,2]
        H[2,1] = H[1,2]
        d2Ud2th_R = numpy.matrix([[-numpy.cos(p[2]), numpy.sin(p[2])],[-numpy.sin(p[2]),-numpy.cos(p[2])]])
        d2Ud2th = (src*d2Ud2th_R.T).A
        H[2,2] = numpy.sum(2*(numpy.square(dUdth[:,0])+numpy.square(dUdth[:,1]) + d[:,0]*d2Ud2th[:,0]+d[:,0]*d2Ud2th[:,0]))
        return H
    t0 = time.time()
    init_pose = (0,0,0)
    src = numpy.array([a.T], copy=True).astype(numpy.float32)
    dst = numpy.array([b.T], copy=True).astype(numpy.float32)
    Tr = numpy.array([[numpy.cos(init_pose[2]),-numpy.sin(init_pose[2]),init_pose[0]],
                   [numpy.sin(init_pose[2]), numpy.cos(init_pose[2]),init_pose[1]],
                   [0,                    0,                   1          ]])
    print("src",numpy.shape(src))
    print("Tr[0:2]",numpy.shape(Tr[0:2]))
    src = cv2.transform(src, Tr[0:2])
    p_opt = numpy.array(init_pose)
    T_opt = numpy.array([])
    error_max = sys.maxsize
    first = False
    while not(first and time.time() - t0 > max_time):
        distances, indices = sklearn.neighbors.NearestNeighbors(n_neighbors=1, algorithm='auto',p = 3).fit(dst[0]).kneighbors(src[0])
        p = scipy.optimize.minimize(res,[0,0,0],args=(src[0],dst[0, indices.T][0]),method='Newton-CG',jac=jac,hess=hess).x
        T  = numpy.array([[numpy.cos(p[2]),-numpy.sin(p[2]),p[0]],[numpy.sin(p[2]), numpy.cos(p[2]),p[1]]])
        p_opt[:2]  = (p_opt[:2]*numpy.matrix(T[:2,:2]).T).A       
        p_opt[0] += p[0]
        p_opt[1] += p[1]
        p_opt[2] += p[2]
        src = cv2.transform(src, T)
        Tr = (numpy.matrix(numpy.vstack((T,[0,0,1])))*numpy.matrix(Tr)).A
        error = res([0,0,0],src[0],dst[0, indices.T][0])

        if error < error_max:
            error_max = error
            first = True
            T_opt = Tr

    p_opt[2] = p_opt[2] % (2*numpy.pi)
    return T_opt, error_max


def main():
    import cv2
    import numpy
    import random
    import matplotlib.pyplot
    n1 = 100
    n2 = 75
    bruit = 1/10
    center = [random.random()*(2-1)*3,random.random()*(2-1)*3]
    radius = random.random()
    deformation = 2

    template = numpy.array([
        [numpy.cos(i*2*numpy.pi/n1)*radius*deformation for i in range(n1)], 
        [numpy.sin(i*2*numpy.pi/n1)*radius for i in range(n1)]
    ])

    data = numpy.array([
        [numpy.cos(i*2*numpy.pi/n2)*radius*(1+random.random()*bruit)+center[0] for i in range(n2)], 
        [numpy.sin(i*2*numpy.pi/n2)*radius*deformation*(1+random.random()*bruit)+center[1] for i in range(n2)]
    ])

    T,error = icp(data,template)
    dx = T[0,2]
    dy = T[1,2]
    rotation = numpy.arcsin(T[0,1]) * 360 / 2 / numpy.pi

    print("T",T)
    print("error",error)
    print("rotation°",rotation)
    print("dx",dx)
    print("dy",dy)

    result = cv2.transform(numpy.array([data.T], copy=True).astype(numpy.float32), T).T
    matplotlib.pyplot.plot(template[0], template[1], label="template")
    matplotlib.pyplot.plot(data[0], data[1], label="data")
    matplotlib.pyplot.plot(result[0], result[1], label="result: "+str(rotation)+"° - "+str([dx,dy]))
    matplotlib.pyplot.legend(loc="upper left")
    matplotlib.pyplot.axis('square')
    matplotlib.pyplot.show()

if __name__ == "__main__":
    main()
Vincent Bénet
  • 1,212
  • 6
  • 20
0

This implementation is not exactly as algorithm. Need to remove mean from points Beed to select points Estimate R T rotation translation with SVD

user3452134
  • 362
  • 4
  • 11